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Takeaways

• EDA = optimization + automation holds main levers for scaling

• Closed AI/ML silos/platforms 🡪 academia must enable itself

• Action: curated data + domain knowledge, culture (rewards, badges, …)

• AI/ML in EDA is difficult: optimization QOR, data needs, ML ops

• Action: baselines, replication in the open

• Action: high-value target selection 

• Innovation beyond a “toy”: shared, sustained, patient efforts

• Action: infrastructure with professional staff, longer-term support horizons

• Proxies have gaps – need coordination to close these !

• Action: Design enablement: PDK scalers, foundation IP, calibrations

• Action: Design tools: formal and physical verifications; DFT; HLS-PS-LS

• Action: Stackable multiphysics solvers, compact models

• Optimization: many rich vistas + can race faster in the open



3A. B. Kahng, 240625 IEEE CEDA Distinguished Lecture

Agenda

• EDA and Scaling
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Scaling

• Scaling = getting better results with less resources

• People, money, time, energy, area, …

• Moore’s Law:  1 week = 1%
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Scaling is Design-Based

Mark Papermaster, keynote, Design Automation Conference, July 2022
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Barriers: Cost, Expertise, Risk

Andreas Olofsson, keynote, Intl. Symp. on Physical Design, March 2018
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Design Scaling = EDA Scaling

• Scaling = getting better results with less resources

• People, money, time, energy, area, …

• Moore’s Law:  1 week = 1%

• Design scaling requires EDA scaling

• More designers and designs 🡪 more EDA engineers

• Differentiated design capability 🡪 bespoke EDA

Must scale design, EDA and people
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EDA = Automation, Optimization for Design

Flow Start

Flow End

• A supplier industry to the semiconductor, electronics industries

• An enabling technology for creation of new IC products

• The core challenge of EDA and IC design: OPTIMIZATION
• O(year) for a new chip

• O(weeks) for synthesis, place-and-route, opt “flow”

• Optimization: best-possible End s.t. resource bounds

Resource “box”:   Compute 

× Licenses 

× People 

× Weeks

EDA = huge, high-stakes, intractable optimizations
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Takeaways

• EDA = optimization + automation holds main levers for scaling
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Agenda

• EDA and Scaling

• AI and EDA: Looking Back
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ASP-DAC 2018
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ASP-DAC 2018 Keynote

• ML = scaling: modeling + prediction; optimization objectives

• ML = Foundation #1 for “Last Levers” of scaling
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ASP-DAC 2018 Invited: Learning-Based EDA

• ML EDA opportunities: modeling, prediction, correlation 

• Challenges: technology and industry
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ASP-DAC 2018 Both Talks

X X
?? ?

Observation: Because
of the red X’s, many 
“target” and “todo” 
items from 2018 are still 
open today.  
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Since 2018 …

• Successes (many were low-hanging fruits)
• Simple physics by regression: timing across corners, EM/IR, …

• Black-box hyperparameter search: Cerebrus, DSO.ai

• Use of ML for early hints and ballpark starting points  

• Disappointments (many are unsurprising)
• Tool silos are more closed (but with data platforms such as JedAI)

• No prospect of companies sharing data, or of public foundation models

• Costs (#machines, #licenses, #training/learning passes, …)

• Surprises
• Rush to LLMs and Generative AI  train, debug, testbench, copilot, manpages, …

• Near-total sway of (EDA) Suppliers in ecosystem

• Challenges and Limits of ML in EDA are real
• Optimization QOR  

• Data 

• Scalability

• Generalization

• Validation

• Cost 
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Messages

• EDA = optimization + automation = the main levers for scaling

• Closed AI/ML platforms 🡪 academia must enable itself

• Action: curated data, domain knowledge

• AI/ML is difficult – optimization QOR, data needs, ML ops

• Action: baselines, replication in the open

• Action: high-value target selection 
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Agenda

• EDA and Scaling

• AI and EDA: Looking Back

• Innovation
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Innovation

“implementation of creative ideas in an economic setting”

• Not the same as creativity or invention

• Requires innovators (people)

• Requires the right conditions
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Disruptive Innovation Christensen, The Innovator’s Dilemma, 1987

• Two entry points:

• Low-end markets (needs are exceeded)

I don’t need a 3nm-capable P&R tool

• New markets (needs are unserved)

I need a 3D chiplet integration planning tool

• Trajectory of disruption

• Initial package of attributes is not   

valued by existing customers  

• But, the attributes that existing 

customers value improve rapidly …

“The next big thing always starts out dismissed as a toy” 
– Chris Dixon, 2010
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Agenda

• EDA and Scaling

• AI and EDA: Looking Back

• Innovation

• Paths Forward
• Infrastructure for learning
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60 Years Ago: 1st SHARE DA Workshop, 1964

SHARE = Society to Help Avoid 
Redundant Effort
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AI/ML for Chip Design: Infrastructure https://github.com/NVlabs/CircuitOps

ASP-DAC 2024 Tutorial #8

VTS-2024 paper

https://github.com/NVlabs/CircuitOps
https://vlsicad.ucsd.edu/Publications/Conferences/407/c407.pdf
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SLICE: Shared Infrastructure for ML EDA

• MLCAD-2023 invited talk, Prof. Jiang Hu, Texas A&M University.

• SLICE website: A one-stop shop for ML EDA infrastructure, with pointers to 
datasets, EDA tool flows, contests, and proxy PDKs. 

• NSF Workshop on Shared Infrastructure for Machine Learning EDA, March 2023.

https://slice-ml-eda.github.io/
https://sites.google.com/view/ml4eda/home
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Takeaways

• EDA = optimization + automation holds main levers for scaling

• Closed AI/ML silos/platforms 🡪 academia must enable itself

• Action: curated data + domain knowledge, culture (rewards, badges, …)

• AI/ML in EDA is difficult: optimization QOR, data needs, ML ops

• Action: baselines, replication in the open

• Action: high-value target selection 

• Innovation beyond a “toy”: shared, sustained, patient efforts

• Action: infrastructure with professional staff, longer-term support horizons
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Agenda

• EDA and Scaling

• AI and EDA: Looking Back

• Innovation

• Paths Forward
• Infrastructure for learning

• Barriers to data 🡪 proxies
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Barriers Demand Proxies

• If it is not sharable, need a proxy!

ICCAD22 talk on “A Mixed Open-Source 
and Proprietary EDA Commons for …”

https://vlsicad.ucsd.edu/Publications/Conferences/395/c395.pptx
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Proxy PDK

• If it is not sharable, need a proxy!

• PDK: ASAP7/5 + scaling, autotuning Scaled Param RVT LVT SLVT

Delay -0.40 -0.39 -0.23

Internal Power -0.27 -0.28 -0.24

Setup/Hold Time -0.08 -0.35 -0.09

Input Pin Cap +0.31 +0.46 +0.30

BEOL Cap -0.52

BEOL Res -0.45

• Power v. Effective CP hockey stick

• Foundry 7nm in Gray

• Autotuned ASAP7 in Orange

• BEOL RC and cell-level tuning params

• Autotuning (Ray/Tune) achieves 
~2.3% loss = MAPE of power, fmax 
errors at 9 target CP values

Scripts are open-sourced in IEEE CEDA DATC RDF-2023 
https://github.com/ieee-ceda-datc/RDF-2023

https://github.com/ieee-ceda-datc/RDF-2023
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Proxy Enablement

• If it is not sharable, need a proxy!
• PDK: ASAP7/5 + scaling, autotuning

• Enablement: PROBE3.0++ 

Scripts are open-sourced:
https://github.com/ABKGroup/PROBE3.0
https://github.com/ieee-ceda-datc/RDF-2023

https://github.com/ABKGroup/PROBE3.0
https://github.com/ieee-ceda-datc/RDF-2023
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Proxy Designs

• If it is not sharable, need a proxy!
• PDK: ASAP7/5 + scaling, autotuning

• Enablement: PROBE3.0++ 

• Designs: PULP, Chipyard, ANG

https://www.forbes.com/sites/robtoews/2022/06/12/synthetic-data-is-
about-to-transform-artificial-intelligence

Large target design 

(288k instances)

Artificial design 

(28k instances)

• Real chip design data: sparse, expensive

🡪 Artificial data can save cost, improve 
quality

• IDEA: small artificial netlist ~ “mini-brain”

Cf. high-throughput drug discovery

🡪 10x smaller 🡪 flow is 15-20x faster

https://www.forbes.com/sites/robtoews/2022/06/12/synthetic-data-is-about-to-transform-artificial-intelligence
https://www.forbes.com/sites/robtoews/2022/06/12/synthetic-data-is-about-to-transform-artificial-intelligence
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Target Design

Artificial Design (10%)

15X

20X

Target Design

Artificial Design (10%)

Artificial Netlist for PPA Matching

• Artificial netlist that matches relevant PPA behavior of target 
netlist stays clear of IP issues, helps STCO/DTCO exploration at scale

• Current focus: Size reduction + “ANG2.0” + Autotuning

• Faster technology evaluation: 10X smaller artificial design 🡪 15-20X 
smaller P&R runtime

• Research on generator knobs, autotuning loss functions, validations …

• Continuum: {ROs, Critical Path models} 🡪 {mini-brains} 🡪 {Arm 
CPUs, massive DTCO/STCO $$$}

Clock Period Sweep Power-

Performance

P&R Runtime

Target Clock Period 
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Artificial Netlist for Flow Exploration

• High value: finding ‘optimal’ flow hyperparameters

• Big, real design incurs substantial costs:  TAT, compute+licenses, 
human effort

• Freedom = Use a small artificial netlist (mini-brain) to find 
an ‘optimal’ flow for a target large netlist (big-brain)

• Can do this IF the Pareto front of flow options for the mini-
brain correspond to those of the big-brain

Pareto Front

mini-brain P&R Flow Exploration big-brain P&R Flow Exploration

Effective Clock Period 
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Proxy Tools

• If it is not sharable, need a proxy!
• PDK: ASAP7/5 + scaling, autotuning

• Enablement: PROBE3.0++ 

• Designs: PULP, Chipyard, ANG

• Tools: OpenROAD, iEDA, Verilator …

• Clarity: Leading edge and baselines become visible and well-defined

• Commercial EDA license terms: tools cannot be benchmarked

• Better science: Advances are reproducible and reusable

• Avoid controversy that wastes time and energy 🡪 mature research 
culture

• Efficiency and velocity: Less reinventing of wheels 🡪 field 
advances faster and is more attractive

• Students today waste months on reconstruction, reimplementation
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Zeitgeist of Openness: Worldwide Investment 

https://www.nsfc.gov.cn/publish/portal0/tab434/info92532.htm China National NSF program 

announcement on EDA for chiplets (April 2024): 8 topics specify open-sourcing of results!

https://www.nsfc.gov.cn/publish/portal0/tab434/info92532.htm
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Zeitgeist of Openness: EU Open Letter

https://open-source-eda-letter.eu/

https://open-source-eda-letter.eu/
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https://open-source-eda-birds-of-a-feather.github.io/

https://open-source-eda-birds-of-a-feather.github.io/
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Takeaways

• EDA = optimization + automation holds main levers for scaling

• Closed AI/ML silos/platforms 🡪 academia must enable itself

• Action: curated data + domain knowledge, culture (rewards, badges, …)

• AI/ML in EDA is difficult: optimization QOR, data needs, ML ops

• Action: baselines, replication in the open

• Action: high-value target selection 

• Innovation beyond a “toy”: shared, sustained, patient efforts

• Action: infrastructure with professional staff, longer-term support horizons

• Proxies have gaps – need coordination to close these !

• Action: Design enablement: PDK scalers, foundation IP, calibrations

• Action: Design tools: formal and physical verifications; DFT; HLS-PS-LS

• Action: Stackable Multiphysics, solvers, compact models !!!



37A. B. Kahng, 240625 IEEE CEDA Distinguished Lecture

Agenda

• EDA and Scaling

• AI and EDA: Looking Back

• Innovation

• Paths Forward
• Infrastructure for learning

• Barriers to data 🡪 proxies

• Renewed attacks on optimization
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IC Design and EDA = Optimization

Commercial EDA

“Optimal”

Clock Period (1/fmax)

Area (Power)

Cloud, GPU, AI/ML, Transparency, Benchmarking, …

+ Innovation Velocity

Open-source / Proxy EDA

Location protected  

by EULA !

Location protected  

by TCS !
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Optimization: Faster, Better and Cheaper ?!?

• “Faster, Better, Cheaper – pick any two”   (it’s the law !)

• Question: Can open-source EDA give us all three at once?

Cheaper

Better

Faster

Attempts ↓

QOR, value ↑

Operational NRE ↓
Design iterations, QOR ↑

Samples ↑

Clustering,
Algorithms,
GPU-/Cloud-native

AI/ML, Algorithms,
“Heavy” optimizers

Open source, 
Community
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1. Chaos: GF12 AES (Synthesis)

Variation of Effective CP: 3.4% Variation of Leakage Power: 38%

Variation of Cell Area: 11% Variation of Total Power: 11%
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Chaos: GF12 AES (Place-and-Route)

Variation of Effective CP: 15% Variation of Wirelength: 9%

Variation of Total Cell Area: 9% Variation of Total Power: 9%
Target Clock Period (ps)
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Input netlists are synthesized with SDC clock periods of 278, 279, 280, 281, and 282ps
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2. Early Design Space Exploration (Arch, RTL)

● Can we better explore architecture, RTL, and SoC 
floorplan design spaces?

● Ideal: ultra-fast, yet match actual implementation

● Hier-RTLMP (src/mpl2 in OpenROAD): RTL- and 
dataflow-driven, human expert-like results  (arXiv)

https://arxiv.org/abs/2304.11761
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Hier-RTLMP vs. Commercial Macro Placer
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3. Dataflow-Aware GPU-Accelerated RePlAce

OpenROAD RePlAce DREAMPlace DG-RePlAce

Global Placer WL Power WNS TNS GP (s) TAT (s)

RePlAce 1.00 1.00 -0.123 -108.15 387 653

DREAMPlace 0.92 0.98 -0.023 -2.623 61 88

DG-RePlAce 0.90 0.97 -0.014 -0.078 32 200

Testcase: BlackParrot RISC-V (Quad-Core)  (evaluator: INVS 21.1) 
(827K stdcells, 196 macros in GF12LP)

arXiv

https://arxiv.org/abs/2404.13049
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Speed Enables Autotuning (NVIDIA AutoDMP)

Hyperparameters (specified in configspace.json)

• coarsening_ratio:  range = [6, 20],  type = int

• max_num_level:  range = [1, 2], type = int

• virtual_iter:  range = [1, 8], type = int

• num_hops:  range = [1, 8],  type = int

• halo_width:  range = [1.0, 3.0],  type = float

• target_density:  range = [0.5, 0.8],  type = float

Step 1:  Specify hyperparameters

Step 2: MOTPE Bayesian Opt tuner

RUN_ID WL Power WNS TNS

default 0.90 0.972 -0.014 -0.078

14 0.86 0.967 -0.002 -0.007

17 0.85 0.971 -0.014 -1.048

18 0.86 0.968 -0.012 -0.216

26 0.85 0.969 -0.027 -1.794

27 0.86 0.970 -0.007 -0.139

Step 3: Run INVS P&R for Pareto candidates

Post-route layout of RUN_ID = 14

Demo: swerv_wrapper 
(NG45)

https://github.com/NVlabs/AutoDMP
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• Idea: Many images / views can be taken in unit time

• Congestion report using Innovus eGR: < 1 second

• Detailed Routing runtime: 1.5 hours

• Example of “ML magic” at interstices (place 🡪 route)

4. More Data in Same Walltime: “Tomography”
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• Human runs DRoute, ECO Route many times  

• Tomography uses postCTS eGR features

• DRVNet model predicts layer-wise routing blockage regions

• BlkgComp model predicts better blockage configuration

• Better results in much less time

Routing Blockage Generation: Human vs. ML
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• Layer-wise blockages generated using Tomography

• Similar or better than Human while not using any post-route result

• Human takes at least one extra iteration of post-route result

• Improves routed wirelength and power in GF12

Human vs. Tomography 

NOVA-NG45 CA53-GF12

No Blkg Human

Layer-wise

Tomography

Layer-wise

No Blkg Human

Layer-wise

Tomography

Layer-wise

DRC 2,003 898 726 3,316 942 902

WL [mm] 3,874 4,016 4,016 1.000 0.992 0.991

WNS [ns] -0.634 -0.752 -0.744 -0.369 -0.615 -0.454

TNS [ns] -419 -512 -614 -1,495 -783 -696

Power [mW] 257.3 259.8 259.9 1.000 0.986 0.986

Tomograph
y

Huma
n

Tomograph
y

Huma
n
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5. Openness Accelerates Progress !

AutoDMP
(2023)

RePlAce
(2018)

DREAMPlace
(2019) DG-RePlAce

(2024)

AutoDMP + 
DG-RePlAce 
(2024++)

ePlace
(2015)

Hier-RTLMP
(2023)

Placement + GPU + Autotuning

Die-to-Die 3D 
placement

(2024)

GPU-GR + 
DG-RePlAce 
(2024++)

3D Placement 
(2024++)

3D placement
(2024++)

Partitioning + Floorplanning and Beyond!

TritonPart 
(2023)

SpecPart
(2022)

BlobPlace
(2024) Hier-RTLMP

(2023)

MedPart
(2024)

K-SpecPart 
(2023)

2.5D / chiplets
(2024++) 

Multi-FPGA 
CAD flows 
(2024++)

RTL-MP
(2022)

ML-based 
partitioning
(2024++)

hMETIS
(1998)
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Takeaways

• EDA = optimization + automation holds main levers for scaling

• Closed AI/ML silos/platforms 🡪 academia must enable itself

• Action: curated data + domain knowledge, culture (rewards, badges, …)

• AI/ML in EDA is difficult: optimization QOR, data needs, ML ops

• Action: baselines, replication in the open

• Action: high-value target selection 

• Innovation beyond a “toy”: shared, sustained, patient efforts

• Action: infrastructure with professional staff, longer-term support horizons

• Proxies have gaps – need coordination to close these !

• Action: Design enablement: PDK scalers, foundation IP, calibrations

• Action: Design tools: formal and physical verifications; DFT; HLS-PS-LS

• Action: Stackable multiphysics compact models

• Optimization: many rich vistas + can race faster in the open
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Takeaways
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• Optimization: many rich vistas + can race faster in the open
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LLM Agents

• Long-running, increasingly complex tasks

• Code generation, planning, reasoning, tool use

• Multimodal

• Learning from feedback / playbooks
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Agenda

• EDA and Scaling

• AI and EDA
• Looking back to 2018

• Looking back from 2030
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Training the Future Workforce Accelerate Innovation

Technology Leadership

Better 
onramps

No friction  (Ex.: “skin” creation)

Logos and images are property of respective owners. The “skin” script was written and 
developed by students at UCSD; however, the underlying commands and reports are 
copyrighted by Cadence. We thank Cadence for granting permission to share our research to 
help promote and foster the next generation of innovators.

Same Cadence Tcl script !

An Observation About “Chips Acts”

Open-
Source EDA
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OpenROAD and LLMs: EDA Corpus

• EDA Corpus: A Large Language Model Dataset for Enhanced 
Interaction with OpenROAD https://github.com/OpenROAD-
Assistant/EDA-Corpus

• 1500+ datapoints of prompt-script and question-answer pairs

• Examples: 

B.-Y. Wu et al., “EDA Corpus”, 
Proc. ISLAD’24 [Arizona State 
Univ. and New York Univ]

Fine-tuning ChatGPT3.5 with EDA Corpus

https://github.com/OpenROAD-Assistant/EDA-Corpus
https://github.com/OpenROAD-Assistant/EDA-Corpus
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2018-2020: Standardized Messages
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• Who is going to move the fulcrum, in which directions?
• What changes if/when “End to end, Deep RL” wins?

• How should academic research contribute to ML in EDA ?

2020: Whither “Machine Learning in EDA” ?

“End-to-end, Deep RL”

“Episodic ML”

Naïve
ABKGroup history
DAC/ICCAD, CDNS/SNPS, …
Everyone rolls their own
Low-hanging fruits harvested
Silos have limits (by definition)

Moving the Fulcrum:

The Bitter Lesson →
EDA Users (“magicians”) ← ?
EDA Suppliers (“better wands”) ← ?
Point/incremental ML research ← ?
Scaling slowdown, better pathfinding   ← ?
EDA Research (e.g., Opt; U+S+A) ← ?
Open-source EDA
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THANK YOU !

Acknowledgments:  Many thanks to Sayak Kundu, Bodhisatta Pramanik,   
Zhiang Wang and Dooseok Yoon for their help with these slides. Past discussions 
with Siddhartha Nath, Igor Markov, Chuck Alpert and Ilgweon Kang are also 
gratefully acknowledged. Research at UCSD is partially supported by DARPA, 
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