DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration For Modern VLSI Placement
Presentation Menu
Placement for very large-scale integrated (VLSI) circuits is one of the most important steps for design closure. We propose a novel GPU-accelerated placement framework DREAMPlace, by casting the analytical placement problem equivalently to training a neural network. Implemented on top of a widely adopted deep learning toolkit PyTorch, with customized key kernels for wirelength and density computations, DREAMPlace can achieve around 40× speedup in global placement without quality degradation compared to the state-of-the-art multithreaded placer RePlAce. We believe this work shall open up new directions for revisiting classical EDA problems with advancements in AI hardware and software.
About DAWN - "The best of EDA research in 2021" invites the researchers to give talks about their papers that received best paper awards from EDA-related journals (e.g., IEEE TCAD) and conferences including MICRO, DAC, ICCAD, DATE, ASP-DAC, and ESWEEK). This is a two-day webinar including four, 20-minute talks (a 15-minute presentation with a 5-minute Q&A).