Presentation Type
Lecture

Reliability, Error-resilience, and Approximation in Integrated Systems

Presenter

Presentation Menu

Abstract

As CMOS technology matures, the problem of building fully reliable circuits has become more challenging, as a variety of mechanisms that perturb system performance have come into play. These range from ”one-time” drifts due to process variations, which shift circuit performance, to ”run-time” shifts caused by aging mechanisms, which cause degradations and/or failures in devices and interconnects. Developing design mechanisms that model and overcome these shifts requires an understanding from the device level, circuit level, system level, and application level.

At the device level, methods that comprehend performance shifts due to statistical as well as deterministic variations due to process and aging are key. At the circuit level, these must be factored into statistical and intelligent corner-based performance analysis approaches, as well as mechanisms that enable post-silicon compensation. At the system level, compensation and redundancy schemes must be utilized to ensure that the system operates at the desired performance, within a specified power budget.

An equally important consideration arises from application-level requirements. While some mission-critical applications, or segments of applications, require absolute accuracy, many emerging applications (e.g., signal filtering, image/video operations, neuromorphic applications) show a good deal of error-resilience, implying that absolute accuracy is not essential. In these scenarios, it is possible to selectively ignore ”accidental” errors due to process and aging, or even introduce deliberate errors in hardware to build approximate systems that provide just enough accuracy for the application. Using a case study approach, it will be shown how application-level considerations will be used to approximate systems that optimize power and performance within a specified error budget.

Description